Effects of reduced free fatty acid availability on hormone-sensitive lipase activity in human skeletal muscle during aerobic exercise.
نویسندگان
چکیده
Hormone-sensitive lipase (HSL) catalyzes the hydrolysis of intramuscular triacylglycerol (IMTG); however, its regulation in skeletal muscle is poorly understood. To examine the effects of reduced free fatty acid (FFA) availability on HSL activity in skeletal muscle during aerobic exercise, 11 trained men exercised at 55% maximal O2 uptake for 40 min after the ingestion of nicotinic acid (NA) or nothing (control). Muscle biopsies were taken at rest and 5, 20, and 40 min of exercise. Plasma FFA were suppressed (P < 0.05) in NA during exercise ( approximately 0.40 +/- 0.04 vs. approximately 0.07 +/- 0.01 mM). The respiratory exchange ratio (RER) was increased throughout exercise (0.020 + 0.008) after NA ingestion. However, the provision of energy from fat oxidation only decreased from 33% of the total in the control trial to 26% in the NA trial, suggesting increased IMTG oxidation in the NA trial. Mean HSL activity was 2.25 + 0.15 mmol x kg dry mass(-1) x min(-1) at rest and increased (P < 0.05) to 2.94 +/- 0.20 mmol x kg dry mass(-1) x min(-1) at 5 min in control. Contrary to the hypothesis, mean HSL was not activated to a greater extent in the NA trial during exercise (2.20 + 0.28 at rest to 2.88 + 0.21 mmol x kg dry mass(-1) x min(-1) at 5 min). No further HSL increases were observed at 20 or 40 min in both trials. There was variability in the response to NA ingestion, as some subjects experienced a large increase in RER and decrease in fat oxidation, whereas other subjects experienced no shift in RER and maintained fat oxidation despite the reduced FFA availability in the NA trial. However, even in these subjects, HSL activity was not further increased during the NA trial. In conclusion, reduced plasma FFA availability accompanied by increased epinephrine concentration did not further activate HSL beyond exercise alone.
منابع مشابه
New Insights into the Interaction of Carbohydrate and Fat Metabolism During Exercise
Fat and carbohydrate are important fuels for aerobic exercise and there can be reciprocal shifts in the proportions of carbohydrate and fat that are oxidized. The interaction between carbohydrate and fatty acid oxidation is dependent on the intracellular and extracellular metabolic environments. The availability of substrate, both from inside and outside of the muscle, and exercise intensity an...
متن کاملReduced plasma FFA availability increases net triacylglycerol degradation, but not GPAT or HSL activity, in human skeletal muscle.
Intramuscular triacylglycerols (IMTG) are proposed to be an important metabolic substrate for contracting muscle, although this remains controversial. To test the hypothesis that reduced plasma free fatty acid (FFA) availability would increase IMTG degradation during exercise, seven active men cycled for 180 min at 60% peak pulmonary O(2) uptake either without (CON) or with (NA) prior ingestion...
متن کاملRegulation of skeletal muscle fat oxidation during exercise in humans.
Fat and carbohydrate are the major energy substrates during aerobic exercise in well-fed humans. The regulation of fat metabolism during exercise has not been as thoroughly studied as carbohydrate metabolism, especially in human skeletal muscle. Traditionally, it was believed that the regulation of skeletal muscle fat metabolism was mainly at the level of the delivery of free fatty acids to the...
متن کاملHormone-sensitive lipase activity and fatty acyl-CoA content in human skeletal muscle during prolonged exercise.
Hormone-sensitive lipase (HSL) catalyzes the hydrolysis of intramuscular triacylglycerols (IMTGs), but HSL regulation is poorly understood in skeletal muscle. The present study measured human skeletal muscle HSL activity at rest and during 120 min of cycling at 60% of peak O2 uptake. Several putative HSL regulators were also measured, including muscle long-chain fatty acyl-CoA (LCFA CoA) and fr...
متن کاملMolecular adaptations of lipolysis to physical activity
The purpose of the present study was to investigate the context of lipid metabolism research in physical activity, lipolysis, lipolysis hormone regulation and the fate of lipolysis products in exercise, fatty acid transporters, some genes involved in lipid metabolism, effect of resistance activity on lipolysis, adaptations of adipose tissue due to physical activity, lipoproteins and apoproteins...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 97 5 شماره
صفحات -
تاریخ انتشار 2004